Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Am J Clin Nutr ; 119(2): 314-323, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128733

RESUMO

BACKGROUND: Improving brain insulin sensitivity, which can be assessed by measuring regional cerebral blood flow (CBF) responses to intranasal insulin, may prevent age-related metabolic and cognitive diseases. OBJECTIVES: This study aimed to investigate longer-term effects of mixed nuts on brain insulin sensitivity in older individuals with overweight/obesity. METHODS: In a randomized, single-blinded, controlled, crossover trial, 28 healthy adults (mean ± standard deviation: 65 ± 3 years; body mass index: 27.9 ± 2.3 kg/m2) received either daily 60-g mixed nuts (15 g of walnuts, pistachio, cashew, and hazelnuts) or no nuts (control) for 16 weeks, separated by an 8-week washout period. Throughout the study, participants were instructed to adhere to the Dutch food-based dietary guidelines. During follow-up, brain insulin action was assessed by quantifying acute effects of intranasal insulin on regional CBF using arterial spin labeling magnetic resonance imaging. Furthermore, effects on peripheral insulin sensitivity (oral glucose tolerance test), intrahepatic lipids, and cardiometabolic risk markers were assessed. RESULTS: Body weight and composition did not change. Compared with control, mixed nut consumption improved regional brain insulin action in 5 clusters located in the left (difference in CBF responses to intranasal insulin: -4.5 ± 4.7 mL/100 g/min; P < 0.001; -4.6 ± 4.8 mL/100 g/min; P < 0.001; and -4.3 ± 3.6 mL/100 g/min; P = 0.007) and right occipital lobes (-4.3 ± 5.6 mL/100 g/min; and -3.9 ± 4.9 mL/100 g/min; P = 0.028). A fifth cluster was part of the left frontal lobe (-5.0 ± 4.6 mL/100 g/min; P < 0.001). Peripheral insulin sensitivity was not affected. Intrahepatic lipid content (-0.7%-point; 95% CI: -1.3%-point to -0.1%-point; P = 0.027), serum low-density lipoprotein cholesterol concentration (-0.24 mmol/L; 95% CI: -0.44 to -0.04 mmol/L; P = 0.019), and systolic blood pressure (-5 mm Hg; 95% CI: -8 to -1 mm Hg; P = 0.006) were lower after the mixed nut intervention. CONCLUSIONS: Longer-term mixed nut consumption affected insulin action in brain regions involved in the modulation of metabolic and cognitive processes in older adults with overweight/obesity. Intrahepatic lipid content and different cardiometabolic risk markers also improved, but peripheral insulin sensitivity was not affected. This trial was registered at clinicaltrials.gov as NCT04210869.


Assuntos
Encéfalo , Doenças Cardiovasculares , Resistência à Insulina , Nozes , Sobrepeso , Idoso , Humanos , Glicemia/metabolismo , Encéfalo/metabolismo , Doenças Cardiovasculares/prevenção & controle , Estudos Cross-Over , Insulina , Lipídeos , Nozes/metabolismo , Obesidade , Sobrepeso/terapia
2.
BMC Genomics ; 24(1): 673, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940838

RESUMO

BACKGROUND: Juglans sigillata L. (walnut) has a high economic value for nuts and wood and has been widely grown and eaten around the world. Light plays an important role in regulating the development of the walnut embryo and promoting nucleolus enlargement, which is one of the factors affecting the yield and quality of walnut. However, little is known about the effect of light on the growth and quality of walnuts. Studies have shown that far red prolonged hypocotyl 3 (FHY3) and far red damaged response (FAR1) play important roles in plant growth, light response, and resistance. Therefore, FHY3/FAR1 genes were identified in walnuts on a genome-wide basis during their growth and development to reveal the potential regulation mechanisms involved in walnut kernel growth and development. RESULTS: In the present study, a total of 61 FHY3/FAR1 gene family members in walnuts have been identified, ranging in length from 117 aa to 895 aa. These gene family members have FHY3 or FAR1 conserved domains, which are unevenly distributed on the 15 chromosomes (Chr) of the walnut (except for the Chr16). All 61 FHY3/FAR1 genes were divided into five subclasses (I, II, III, IV, and V) by phylogenetic tree analysis. The results indicated that FHY3/FAR1 genes in the same subclasses with similar structures might be involved in regulating the growth and development of walnut. The gene expression profiles were analyzed in different walnut kernel varieties (Q, T, and F). The result showed that some FHY3/FAR1 genes might be involved in the regulation of walnut kernel ripening and seed coat color formation. Seven genes (OF07056-RA, OF09665-RA, OF24282-RA, OF26012-RA, OF28029-RA, OF28030-RA, and OF08124-RA) were predicted to be associated with flavonoid biosynthetic gene regulation cis-acting elements in promoter sequences. RT-PCR was used to verify the expression levels of candidate genes during the development and color change of walnut kernels. In addition, light responsiveness and MeJA responsiveness are important promoter regulatory elements in the FHY3/FAR1 gene family, which are potentially involved in the light response, growth, and development of walnut plants. CONCLUSION: The results of this study provide a valuable reference for supplementing the genomic sequencing results of walnut, and pave the way for further research on the FHY3/FAR1 gene function of walnut.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Juglans , Fitocromo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Juglans/genética , Fitocromo/genética , Fitocromo/metabolismo , Nozes/metabolismo , Filogenia , Proteínas Nucleares/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Physiol ; 193(2): 1161-1176, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37399247

RESUMO

Terpenes are volatile compounds responsible for aroma and the postharvest quality of commercially important xiangfei (Torreya grandis) nuts, and there is interest in understanding the regulation of their biosynthesis. Here, a transcriptomics analysis of xiangfei nuts after harvest identified 156 genes associated with the terpenoid metabolic pathway. A geranyl diphosphate (GPP) synthase (TgGPPS) involved in production of the monoterpene precursor GPP was targeted for functional characterization, and its transcript levels positively correlated with terpene levels. Furthermore, transient overexpression of TgGPPS in tobacco (Nicotiana tabacum) leaves or tomato (Solanum lycopersicum) fruit led to monoterpene accumulation. Analysis of differentially expressed transcription factors identified one basic helix-loop-helix protein (TgbHLH95) and one basic leucine zipper protein (TgbZIP44) as potential TgGPPS regulators. TgbHLH95 showed significant transactivation of the TgGPPS promoter, and its transient overexpression in tobacco leaves led to monoterpene accumulation, whereas TgbZIP44 directly bound to an ACGT-containing element in the TgGPPS promoter, as determined by yeast 1-hybrid test and electrophoretic mobility shift assay. Bimolecular fluorescence complementation, firefly luciferase complementation imaging, co-immunoprecipitation, and GST pull-down assays confirmed a direct protein-protein interaction between TgbHLH95 and TgbZIP44 in vivo and in vitro, and in combination these proteins induced the TgGPPS promoter up to 4.7-fold in transactivation assays. These results indicate that a TgbHLH95/TgbZIP44 complex activates the TgGPPS promoter and upregulates terpene biosynthesis in xiangfei nuts after harvest, thereby contributing to its aroma.


Assuntos
Taxaceae , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nozes/metabolismo , Terpenos/metabolismo , Monoterpenos/metabolismo , Taxaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Sci ; 334: 111753, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268111

RESUMO

Lipid droplets (LD) is an important intracellular organelle for triacylglycerols (TAGs) storage. A variety of proteins on the surface of LD coordinately control the contents, size, stability and biogenesis of LD. However, the LD proteins in Chinese hickory (Carya cathayensis) nuts, which is rich in oil and composed of unsaturated fatty acids, have not been identified and their roles in LD formation still remain largely unknown. In present study, LD fractions from three developmental stages of Chinese hickory seed were enriched and the LD fraction accumulated proteins were then isolated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein compositions throughout the various developmental phases were calculated using label-free intensity-based absolute quantification (iBAQ) algorithm. The dynamic proportion of high abundance lipid droplets proteins such as oleosins 2 (OLE2), caleosins 1 (CLO1) and steroleosin 5 (HSD5) increased parallelly with the embryo development. For low abundance lipid droplets proteins, seed LD protein 2 (SLDP2), sterol methyltransferase 1 (SMT1) and LD-associated protein 1 (LDAP1) were the predominant proteins. Moreover, 14 low abundance OB proteins such as oil body-associated protein 2 A (OBAP2A) were selected for future investigation that may associate with embryo development. Overall, 62 differentially expressed proteins (DEPs) were determined by label free quantification (LFQ) algorithms and may involve in LD biogenesis. Furthermore, the subcellular localization validation indicated that selected LD proteins were targeted to the lipid droplets, confirming the promising of proteome data. Taken together, this comparative study may shed light on further study to understand the lipid droplets function in the seed, which contains high oil content.


Assuntos
Carya , Proteoma , Proteoma/metabolismo , Gotículas Lipídicas/metabolismo , Carya/metabolismo , Nozes/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Desenvolvimento Embrionário
5.
Food Res Int ; 169: 112858, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254432

RESUMO

Alkaline-extracted walnut protein isolates showed relatively poor solubility and emulsifying properties in many previous studies. However, whether they can be used as potential emulsifiers to stabilize high internal phase emulsions (HIPEs) remains unknown. Herein, walnut protein isolates were prepared by alkaline extraction from walnut kernels with or without pellicles (named PAWPI and AWPI, respectively). PAWPI conjugated with pellicle polyphenols showed improved solubility and higher antioxidant capacity than AWPI. HIPEs were fabricated via a one-step method using AWPI or PAWPI as the sole protein emulsifier. HIPEs (oil fraction of 0.8, with 0.1% ß-carotene) could be stabilized by PAWPI at a relatively low concentration of 0.2% (w/v), while at least 1% (w/v) AWPI was required to effectively stabilize HIPEs. HIPEs stabilized by PAWPI had smaller oil droplet sizes than those stabilized by AWPI. Rheological analysis indicated that PAWPI-stabilized HIPEs showed higher viscosity and better viscoelasticity than AWPI-stabilized HIPEs. Large-amplitude oscillation shearing analysis suggested that PAWPI-stabilized HIPEs were stiffer but more brittle than AWPI-stabilized HIPEs. Moreover, both PAWPI- and AWPI-stabilized HIPEs exhibited good storage stability and were relatively stable against heat treatment and ionic strength. PAWPI-stabilized HIPEs showed a higher protective capacity for encapsulated ß-carotene than AWPI-stabilized HIPEs. In addition, PAWPI-stabilized HIPEs showed good 3D printability and could be used as a promising edible ink.


Assuntos
Juglans , Emulsões/metabolismo , beta Caroteno , Emulsificantes , Nozes/metabolismo
6.
Food Chem ; 416: 135808, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893647

RESUMO

Walnut oil with very high proportion of polyunsaturated fatty acids exhibits many health beneficial effects. We hypothesized that the oil composition is led by a special pattern/mechanism for triacylglycerol (TAG) biosynthesis as well as accumulation in walnut kernel during embryo development. To test this hypothesis, shotgun lipidomics was performed for class-targeted lipid analysis (including TAG, phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and lysophosphatidylcholine species) in walnut kernels from three cultivar collected at three critical stages of embryo development. The results indicated that TAG synthesis in the kernel happened before 84 days after flowering (DAF) and was significantly enhanced between 84 and 98 DAF. Moreover, TAG profile was changing along with DAFs due to the increased composition of 18:1 FA in TAG pool. Moreover, lipidomics also demonstrated that the enhanced acyl editing was responsible for the flux of FA through phosphatidylcholine for eventual TAG synthesis. Therefore, TAG biosynthesis in walnut kernel was characterized directly from lipid metabolism.


Assuntos
Juglans , Juglans/genética , Juglans/metabolismo , Lipidômica , Nozes/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo
7.
Nutrients ; 15(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771274

RESUMO

We recently demonstrated that the consumption of mixed tree nuts (MTNs) during caloric restriction decreased cardiovascular risk factors and increased satiety. Tryptophan (Trp) metabolism has been indicated as a factor in cardiovascular disease. Here, we investigated the effect of MTNs on Trp metabolism and the link to cardiovascular risk markers. Plasma and stool were collected from 95 overweight individuals who consumed either MTNs (or pretzels) daily as part of a hypocaloric weight loss diet for 12 weeks followed by an isocaloric weight maintenance program for an additional 12 weeks. Plasma and fecal samples were evaluated for Trp metabolites by LC-MS and for gut microbiota by 16S rRNA sequencing. Trp-kynurenine metabolism was reduced only in the MTNs group during weight loss (baseline vs. week 12). Changes in Trp-serotonin (week 24) and Trp-indole (week 12) metabolism from baseline were increased in the MTNs group compared to the pretzel group. Intergroup analysis between MTN and pretzel groups does not identify significant microbial changes as indicated by alpha diversity and beta diversity. Changes in the relative abundance of genus Paludicola during intervention are statistically different between the MTNs and pretzel group with p < 0.001 (q = 0.07). Our findings suggest that consumption of MTNs affects Trp host and microbial metabolism in overweight and obese subjects.


Assuntos
Doenças Cardiovasculares , Triptofano , Humanos , Triptofano/metabolismo , Sobrepeso , Doenças Cardiovasculares/prevenção & controle , Nozes/metabolismo , Lanches , RNA Ribossômico 16S , Fatores de Risco , Fatores de Risco de Doenças Cardíacas
8.
J Agric Food Chem ; 71(10): 4306-4318, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36854654

RESUMO

Walnuts are abundant in oil content, especially for polyunsaturated fatty acids, but the understanding of their formation is limited. We collected walnut (Juglans regia L.) kernels at 60, 74, 88, 102, 116, 130, and 144 days after pollination (designated S1-S7). The ultrastructure and accumulation of oil bodies (OBs) were observed using transmission electron microscopy (TEM), and the oil content, fatty acid composition, and proteomic changes in walnut kernels were determined. The oil content and OB accumulation increased during the development and rose sharply from S1 to S3 stages, which are considered the key lipogenesis stage. A total of 5442 proteins were identified and determined as differentially expressed proteins (DEPs) using label-free proteomic analysis. Fatty acid desaturases (FAD) 2, FAD3, oleosin, and caleosin were essential and upregulated from the S1 to S3 stages. Furthermore, the highly expressed oleosin gene JrOLE14.7 from walnuts was cloned and overexpressed in transgenic Brassica napus. The overexpression of JrOLE14.7 increased the oil content, diameter, hundred weight of seeds and changed the fatty acid composition and OB size of Brassica napus seeds. These findings provide insights into the molecular mechanism of oil biosynthesis and the basis for the genetic improvement of walnuts.


Assuntos
Brassica napus , Juglans , Juglans/química , Lipogênese , Proteômica , Nozes/genética , Nozes/metabolismo , Ácidos Graxos/metabolismo , Brassica napus/metabolismo
9.
Food Chem ; 398: 133859, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987001

RESUMO

Astringency removal is important for the quality of Torreya grandis nut and occurs after harvest. Here, we evaluated the effect of NaHCO3 treatment on astringency removal and compared the differential metabolites of the seed coat and kernel using a UHPLC QQQ-MS-based metabolomics approach. The result revealed the nut astringency was primarily enriched in the seed coat with more soluble tannins. The NaHCO3 treatment greatly shortened the de-astringency process, as indicated by a faster conversion of soluble tannins to insoluble tannins and more acetaldehyde production. Besides, a total of 293 metabolites, including 92 phenolic acids and 37 flavonoids, were tentatively characterized in the seed coat. A further comparative analysis of the metabolomics indicated epigallocatechin, gallocatechin, catechin, procyanidin B1, B2, B3 and C1 to be the major metabolites influenced by the NaHCO3 treatment. This study provides new insights regarding the metabolite differences of Torreya grandis nuts processed with different de-astringent treatments.


Assuntos
Adstringentes , Taxaceae , Metabolômica , Nozes/metabolismo , Taninos/metabolismo
10.
Food Chem ; 406: 134987, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36446278

RESUMO

Secondary metabolites are a group of small molecules with critical roles in plants fitness in addition to their potential bioactivities in humans. Most of these compounds are associated with the flavor and quality formation of fruits or nuts during the development or the postharvest stages. Change in metabolic profiles and shifts underpinning the post-ripening process in T. grandis nuts are not yet reported. In this study, a large scale untargeted metabolomics approach was employed in T. grandis nuts, revealing for a total of 140 differential accumulated metabolites. Among them, nearly 60% of metabolites belonging to terpenoids, coumarins and phenolic acids, and phytohormones were showed a gradual accumulation pattern, while most of compounds in flavonoids were decreased during post-ripening. An in-depth analysis of changes in these metabolite classes suggest a framework for post-ripening process effect associated with the postharvest quality of T. grandis nuts for the first time.


Assuntos
Nozes , Taxaceae , Humanos , Nozes/metabolismo , Metabolômica , Frutas/metabolismo , Metaboloma
11.
J Sci Food Agric ; 103(8): 4034-4046, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36453713

RESUMO

BACKGROUND: The food industry has begun to develop foods fortified with unsaturated fatty acids; however, the susceptibility of pine nut oil to oxidation and other properties limits its use in food production. Researchers often inhibit the oxidation of oil by adding antioxidants. After the combination of polyphenols and proteins, the complex formed can improve or enhance the performance of the emulsion when it stabilizes the emulsion. Encapsulating, protecting, and controlling the release behavior of vitamin D (VD ) during digestion through an emulsion delivery system can effectively overcome limitations such as easy degradation during processing and storage. This research uses tannic acid, gallic acid, tea polyphenol, and vanillic acid to prepare Pickering emulsions, and the type of phenolic compound is explored by multi-dimensional characterization and the amount of emulsion. RESULTS: The influence of traits, microstructure, stability, VD load application, and effect on the emulsion matrix's encapsulation rate and bioaccessibility is studied. A method was investigated to enhance the oxidative stability of whey protein isolate-stabilized emulsions by introducing phenol. Pickering emulsions could be obtained in the presence of phenol, while the type of phenol played a relatively important role, probably because the mechanism involved interactions between particles. Viscosity and creaming stability of emulsions increased with crosslinking of phenol in emulsions. In addition, the presence of phenol in emulsions significantly increased the bioaccessibility of encapsulated VD after in vitro digestion. CONCLUSION: The method presented in this study was important for improving the oxidative stability of pine nut oil emulsions, expanding the application of pine nut oil in the food industry, and providing the theoretical and application basis of application and active substance emulsion delivery systems. © 2022 Society of Chemical Industry.


Assuntos
Fenóis , Vitamina D , Emulsões/química , Nozes/metabolismo , Antioxidantes/química , Vitaminas , Polifenóis , Tamanho da Partícula
12.
BMC Plant Biol ; 22(1): 598, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539704

RESUMO

BACKGROUND: Juglans regia L. is an important nut tree that has a wide range of distribution in temperate regions of the world. In some walnut orchards, walnut blight can become a problematic disease that affects the growth of walnut trees. To explore the correlation between biochemical response and walnut resistance, we inoculated four walnut cultivars with Xanthomonas arboricola pv. juglandis (Xaj). The walnut cultivars were, namely, 'Xiangling', 'Xiluo 2', 'Yuanfeng' and 'Xifu 2'. Total phenol content (TPC) and total flavonoid content (TFC) were measured, whereby nine major phenolic compounds and several relevant enzymes were identified. RESULTS: The results showed that the most resistant and susceptible walnut varieties were 'Xiluo 2' and 'Xifu 2' respectively. The reaction of walnut to Xaj was characterized by the early accumulation of phenolic compounds in the infected site. After inoculation with Xaj, we found that the resistant variety 'Xiluo 2' show the significant differences with other varieties at different time points through the determination of related antioxidant enzymes such as catalase (CAT) and peroxidase (POD). Meanwhile, the phenylalanine ammonia lyase (PAL) of 'Xiluo 2' increased significantly at 8 day post infection (dpi) and made differences from the control samples, while other varieties changed little. And the polyphenol oxidase (PPO) was significantly higher than in the control at 16 dpi, maintaining the highest and the lowest activity in 'Xiluo 2' and 'Xifu 2' respectively. It was also found that the content of protocatechuic acid in all cultivars increased significantly at 4 dpi, and 'Xiluo 2' was significantly higher than that of the control. In the early stage of the disease, ferulic acid content increased significantly in 'Xiluo 2'. CONCLUSION: Our findings confirmed that the metabolism of phenolic compounds and related defense enzymes are of great significance in the response of walnut to Xaj.


Assuntos
Juglans , Juglans/metabolismo , Nozes/metabolismo , Fenóis/metabolismo
13.
Biomed Pharmacother ; 155: 113809, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271580

RESUMO

Areca palm nut (Areca catechu) has been listed as one of the most addictive substances, along with tobacco, alcohol, and caffeine. It belongs to the family Arecaceae and is widely used in Asia. Areca nut contains seven psychoactive alkaloids; however, the effects of these alkaloids on behaviors are rarely to be addressed in zebrafish. Therefore, this study aims to compare the psychoactive and potential adverse effects of four primary alkaloids (arecoline, arecaidine, guvacine, and guvacoline) isolated from areca nut on zebrafish. We found that four alkaloids induced hyperactivity-like behaviors in zebrafish larvae. Cooperating the results with the previous study, molecular docking scores suggested these alkaloids might bind to multiple muscarinic acetylcholine receptors (mAChRs), and various best binding modes were shown. According to the adult zebrafish behavioral test, arecoline was found to slightly increase the locomotor activity and caused tightening shoaling formations of adult zebrafish. Meanwhile, zebrafish exposed to arecaidine have reduced aggressiveness and conspecific social interaction. Similar to arecaidine, guvacoline treatment also caused abnormalities in zebrafish social behaviors. Furthermore, the fish displayed abnormal exploratory behaviors after being exposed to guvacoline. Interestingly, altered fear response behaviors were only displayed by guvacine-treated fish besides their lower locomotor activity. Based on the results of molecular docking, we hypothesize that the behavior alterations might be a consequence of the interaction between alkaloids and multiple mAChRs in the nervous system. In summary, our study found that each alkaloid specifically affects adult zebrafish behaviors.


Assuntos
Alcaloides , Areca , Animais , Areca/química , Areca/metabolismo , Arecolina/toxicidade , Arecolina/química , Peixe-Zebra/metabolismo , Simulação de Acoplamento Molecular , Nozes/química , Nozes/metabolismo , Cafeína , Alcaloides/farmacologia , Alcaloides/química , Receptores Muscarínicos
14.
Nutr Res ; 106: 85-100, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36156349

RESUMO

Pine nut oil (PNO) is a rich source of polyunsaturated fatty acids. It is obtained from species such as Pinus siberica, Pinus gerardinia, Pinus koraiensis, and so on. A few studies have shown its protective effect against obesity by regulating lipid metabolism and suppressing appetite. However, its effect on the release of adipokines and obesity-associated signaling pathways is yet to be investigated. We hypothesized that PNO might exert its antiobesogenic effects by modulating adiponectin/leptin-mediated cell signaling pathways. Therefore, the present study was designed to investigate the mechanism of action of 10% PNO substitution on the high-fat diet-induced obesity in male Wistar rats. PNO incorporation in the diet significantly decreased the body weight, body mass index, Lee index, liver weight, blood glucose levels, and adipose tissue size. It also reduced the levels of proinflammatory cytokines (interleukin-6 and tumor necrosis factor-α) and triglycerides and increased levels of high-density lipoprotein cholesterol in serum significantly. It was observed that incorporation of PNO led to a significant increase in ADIPOR1/R2 expression in visceral epididymal adipose tissue (vEAT). It also lowered serum leptin (P < .05) and increased adiponectin levels. Furthermore, PNO supplementation increased P-AMPK/AMPK and P-AKT/AKT ratio and decreased the expression of FOXO-1 in both visceral epididymal and retroperitoneal adipose tissue (vEAT and vRPAT). Therefore, the present study showed that incorporation of PNO in the diet might prevent obesity and improve the metabolic inflammatory state in obesity by controlling the release of adipokines and proinflammatory cytokines. Comparative analysis between vEAT and vRPAT also revealed that vEAT is metabolically more active in combating obesity than vRPAT.


Assuntos
Dieta Hiperlipídica , Leptina , Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas/metabolismo , Adiponectina , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Interleucina-6/metabolismo , Gordura Intra-Abdominal/metabolismo , Lipoproteínas HDL , Masculino , Nozes/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Food Funct ; 13(19): 9904-9917, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36053223

RESUMO

The consumption of mixed nuts is a healthy dietary strategy to reduce the risk of cardiovascular disease and has a prebiotic effect on the gut microbiota. However, there is a lack of basic research based on mixed nut formulation. This study established a new method for optimizing mixed nut formulations using the Nutrient Rich Food (NRF) index model. Nutrient indices were adjusted by combining 10 and 8 encouraging nutrients and 3 limiting nutrients of nuts and dried fruits, respectively. The optimized mixed nut formulation had the highest total NRF and the lowest energy, which was achieved by applying linear programming. The effect of an optimized mixed nut formulation on insulin resistance and gut microbiota was investigated in an animal model of metabolic disorders caused by a high-fat diet. Male C57BL/6J mice (n = 12 per group) were fed a low-fat diet, a high-fat diet (HFD), HFD with a supplemented classical randomized controlled trial mixed nut formula (MN1), a commercially available mixed nut formula (MN2), a high-nutrient density mixed nut formula (MN3), or ellagic acid (positive control). MN3 treatment decreased total plasma cholesterol, homeostasis model assessment-insulin resistance index, high sensitivity C-reactive protein, and zonulin levels, strengthened the intestinal barrier, and significantly altered the ß-diversity of the intestinal microbiota as compared to the HFD group. These effects of MN3 were superior to MN1 and MN2. In conclusion, MN3 had the highest nutrient density and improved insulin resistance in low-grade inflammation via gut microbiota remodeling.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Animais , Masculino , Camundongos , Proteína C-Reativa/metabolismo , Colesterol/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácido Elágico/farmacologia , Camundongos Endogâmicos C57BL , Nutrientes , Nozes/metabolismo
16.
Nutrients ; 14(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406088

RESUMO

Hyperhomocysteinemia (HHcy) is a methionine metabolism problem that causes a variety of inflammatory illnesses. Oxidative stress is among the processes thought to be involved in the pathophysiology of the damage produced by HHcy. HHcy is likely to involve the dysfunction of several organs, such as the kidney, liver, or gut, which are currently poorly understood. Nuts are regarded as an important part of a balanced diet since they include protein, good fatty acids, and critical nutrients. The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of cashew nuts in HHcy induced by oral methionine administration for 30 days, and to examine the possible pathways involved. In HHcy rats, cashew nuts (100 mg/kg orally, daily) were able to counteract clinical biochemical changes, oxidative and nitrosative stress, reduced antioxidant enzyme levels, lipid peroxidation, proinflammatory cytokine release, histological tissue injuries, and apoptosis in the kidney, colon, and liver, possibly by the modulation of the antioxidant nuclear factor erythroid 2-related factor 2 NRF-2 and inflammatory nuclear factor NF-kB pathways. Thus, the results suggest that the consumption of cashew nuts may be beneficial for the treatment of inflammatory conditions associated with HHcy.


Assuntos
Anacardium , Hiper-Homocisteinemia , Animais , Antioxidantes/metabolismo , Hiper-Homocisteinemia/patologia , Inflamação , Metionina/metabolismo , Nozes/metabolismo , Estresse Oxidativo , Ratos
17.
BMC Genomics ; 23(1): 190, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255828

RESUMO

BACKGROUND: Walnuts (Juglans regia L.) are known for their nutrient-rich nuts and are one of the important economic tree species in the world. However, due to global warming and soil salinization, walnuts suffer from various abiotic stresses. TIFY (TIF[F/Y]XG) proteins play an essential role in the growth and development of plants, signal transduction, and stress response in plants. At present, although the TIFY gene family of a number of plants has been identified and studied, how TIFY takes part in stress tolerance remains obscure and many functions of TIFY require further investigation. RESULT: In this study, twenty-one TIFY transcription factors were identified in the walnut genome database, and they were divided into four subfamilies (TIFY, JAZ, ZML, and PPD) by bioinformatics analysis. Chromosome location revealed tandem duplication of some genes. Phylogenetic tree analysis showed JrTIFYs were closely related to the TIFY gene family of Arabidopsis thaliana (A. thaliana). qRT-PCR (quantitative real-time PCR) analysis revealed the TIFY genes have different expression patterns in 'Qingxiang' and 'Xiangling' walnut varieties under drought, heat, and salt stress. JAZ subfamily was more expressed in different abiotic stress than other subfamilies. The expressions of JrTIFY14 under heat and salt stress were significantly higher than those under drought stress. However, the expression of JrTIFYs was not significant in 'Xiangling'. CONCLUSION: This study reveals the TIFY gene family plays an important role in walnuts facing abiotic stresses and provides a theoretical basis for walnut breeding.


Assuntos
Juglans , Regulação da Expressão Gênica de Plantas , Juglans/genética , Família Multigênica , Nozes/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
18.
Food Chem ; 371: 131050, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537615

RESUMO

Vitamin B3, derived primarily from plant sources, is an essential nutrient for humans. Torreya grandis is rich in vitamin B3, however, the mechanism underlying the biosynthesis and regulation of vitamin B3 in T. grandis remains unclear. A systematic transcriptomic investigation was thus conducted to identify the gene expression pattern of vitamin B3 biosynthesis in 10 T. grandis cultivars. The findings suggest that biosynthesis occurs mainly via the aspartate pathway. Expression and correlation analyses indicate that aspartate oxidase (AOX) and quinolinate synthase (QS) may play important roles in vitamin B3 accumulation. Furthermore, co-expression network and ethephon treatments indicate that the ethylene response factor (ERF) may be involved in the regulation of vitamin B3 biosynthesis in T. grandis nuts. Our findings not only help to elucidate the biosynthesis of vitamin B3, but also provide valuable resource material for future genomic research and molecular-assisted breeding to develop genotypes with higher vitamin B3 levels.


Assuntos
Niacinamida , Nozes , Taxaceae , Etilenos , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Nozes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitaminas
19.
Annu Rev Food Sci Technol ; 13: 145-166, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34936815

RESUMO

Almonds (Prunus dulcis) are one of the most consumed tree-nuts worldwide, with commercial production in arid environments such as California, Spain, and Australia. The high consumption of almonds is partly due to their versatile usage in products such as gluten-free flour and dairy alternatives as well as them being a source of protein in vegetarian diets. They contain high concentrations of health-promoting compounds such as Vitamin E and have demonstrated benefits for reducing the risk of cardiovascular disease and improving vascular health. In addition, almonds are the least allergenic tree nut and contain minute quantities of cyanogenic glycosides. Production has increased significantly in the past two decades with 3.12 billion pounds of kernel meat produced in California alone in 2020 (USDA 2021), leading to a new emphasis on the valorization of the coproducts (e.g., hulls, shells, skins, and blanch water). This article presents a review of the chemical composition of almond kernels (e.g., macro and micronutrients, phenolic compounds, cyanogenic glycosides, and allergens) and the current research exploring the valorization of almond coproducts.


Assuntos
Prunus dulcis , Nozes/química , Nozes/metabolismo , Fenóis , Prunus dulcis/química , Prunus dulcis/metabolismo , Água/análise
20.
Nutr Cancer ; 74(2): 527-538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33570439

RESUMO

IntroductionHepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Medemia argun (MA) fruits have been found to possess proanthocyanidins (PACs), having antioxidant activity. Methods: Intraperitoneal (IP) diethyl nitrosamine (DENA; 200 mg/kg, once) and carbon tetra chloride (CCl4, 3 ml/kg/week, subcutaneously, for 6 weeks) induced HCC in rats. Animals groups: Group I; received vehicle (control). Group II; received MA seed extract, 100 mg/kg (twice/week) for 12 weeks, IP. Group III; received carcinogenic agents only. Group IV; received MA for two weeks before administration of DENA/CCl4 till the end of the experiment. The total period of the experiment was three months. Results: DENA and CCl4 induced HCC, elevated serum alpha-fetoprotein (AFP), liver size, weight, tissue lymphocytic infiltration, nuclear/cytoplasmic ratio, collagen fiber and polysaccharide deposition, cellular proliferation, excessive pro-apoptotic caspase-3 accumulation, disrupted apoptosis. MA prior to DENA/CCl4, significantly protected liver against cancer progression, indicated by serum enzymes, antioxidant markers(glutathione, nitric oxide, and depressed malondialdehyde contents) in the MA-pretreated group, compared to the HCC one, without apparent useful action on superoxide dismutase activity, enhanced apoptosis in liver, through increased casapase-3 expression. The HCC group showed decreased antioxidant defense and BAX/Bcl-2 ratio. Conclusions: This study assumes that MA has a chemo-preventive effect against hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Dietilnitrosamina/toxicidade , Egito , Fígado , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Nozes/metabolismo , Pirazóis , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...